

A Preliminary Study on an Intrusion Detection Method using Large Language Models in Industrial Control System

¹SeokHyun Ann, ¹Seong-je Cho, ²Hongeun Kim

¹DanKook University, ²Dongguk University

Introduction

Motivation

- As Operational Technology(OT) and Industrial Control Systems (ICS) evolve, their devices are moving beyond closed networks and connecting to external networks.
- Internet-accessible OT/ICS devices are increasingly exposed to cybersecurity threats.
- Objectives
 - We propose an LLM-based method to detect intrusion and

Initial Access 12 techniques	Execution 10 techniques	Persistence 6 techniques	Privilege Escalation 2 techniques	Evasion 7 techniques	Discovery 5 techniques	Lateral Movement 7 techniques	Collection 11 techniques	Command and Control 3 techniques	Inhibit Response Function 14 techniques	Impair Process Control 5 techniques	Impact 12 techniques
Drive-by Compromise	Autorun Image	Hardcoded Credentials	Exploitation for	Change Operating Mode	Network Connection	Default Credentials	Adversary-in-the-Middle	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Exploit Public-Facing	Change Operating Mode	Modify Program	Privilege Escalation	Exploitation for Evasion	Enumeration	Exploitation of Remote	Automated Collection	Connection Proxy		Modify Parameter	Denial of Control
Application		Module Firmware	Hooking	Indicator Removal on	Network Sniffing	Services	Data from Information	Standard Application	Alarm Suppression	Module Firmware	Denial of View
Exploitation of Remote Services	Command-Line Interface	Project File Infection		Host	Remote System Discovery	Hardcoded Credentials	Repositories	Layer Protocol	Block Command Message	Spoof Reporting	Loss of Availability
External Remote Services	Execution through API	System Firmware		Masquerading	Remote System	Lateral Tool Transfer	Data from Local System		Block Reporting Message	Message	Loss of Control
Internet Accessible Device	Graphical User	Valid Accounts		Rootkit	Information Discovery	Program Download	Detect Operating Mode		Block Serial COM	Unauthorized Command Message	Loss of Productivity and
Remote Services	Interface			Spoof Reporting Message	Wireless Sniffing	Remote Services	I/O Image		Change Credential		Revenue
	Hooking			System Binary Proxy		Valid Accounts	Monitor Process State		Data Destruction		Loss of Protection
Replication Through Removable Media	Modify Controller			Execution			Point & Tag		Denial of Service		Loss of Safety
Rogue Master	Tasking						Identification		Device Restart/Shutdown		Loss of View
Spearphishing	Native API						Program Upload		Manipulate I/O Image		Manipulation of Control
Attachment	Scripting						Screen Capture		Modify Alarm Settings		Manipulation of View
Supply Chain Compromise	User Execution						Wireless Sniffing		Rootkit		Theft of Operational
Transient Cyber Asset									Service Stop		Information
									System Firmware		
Wireless Compromise									System Firmware		

Fig 3. Tactic and Techniques related to Stuxnet Malware Attack

Technique ID: T0802

Technique Name: Automated Collection

Page Title: Automated Collection, Technique T0802 - ICS | MITRE ATT&CK® Description: Adversaries may automate collection of industrial environment

cyberattacks in OT/ICS environments.

 Instead of detection method based on signatures such as IP, port, and protocol, we use adversary tactics and techniques gathered from MITRE ATT&CK for ICS matrix and open-source data.

2. Issue

* Problem

• LLMs sometimes generate incorrect answers because they do not learn based on all the latest facts or evidence.

	GPT - 3.5	GPT - 4	GPT - 4o
Definition of OT/ICS	Ο	Ο	Ο
Definition of PLC	Ο	Ο	Ο
Cyberattacks related to PLC	X	Χ	X

information using tools or scripts. This automated collection may leverage native control protocols and tools available in the control systems environment. For example, the OPC protocol may be used to enumerate and gather information. Access to a system or interface with these native protocols may allow collection and enumeration of other attached, communicating servers and devices.

Targeted Assets:

- Asset ID: A0007, Asset Name: Control Server

- Asset ID: A0006, Asset Name: Data Historian

- Asset ID: A0003, Asset Name: Programmable Logic Controller (PLC) Mitigations:

- Mitigation ID: M0807, Mitigation Name: Network Allowlists

Description: Utilize network allowlists to restrict unnecessary connections to network devices (e.g., comm servers, serial to ethernet converters) and services, especially in cases when devices have limits on the number of simultaneous sessions they support.

- Mitigation ID: M0930, Mitigation Name: Network Segmentation

Description: Prevent unauthorized systems from accessing control servers or field devices containing industrial information, especially services used for common automation protocols (e.g., DNP3, OPC).

Fig 4. Information of the 'automated collection' technique in OT/ICS

Data Pre-processing

- The collected information can be organized based on the MITRE ATT&CK for ICS Matrix.
- It is possible to Identify the tactics and techniques frequently exploited by attackers in OT/ICS environments.
- It processes the information into a format that a LLM can learn from.

* Modeling

- 1. Explain the Definition of OT (Operational Technology) and ICS (Industrial Control System).
- 2. Explain PLC (Programmable Logic Controller) in OT and ICS environments.
- 3. Please Let me know cyberattacks related to the PLC in OT and ICS environments using MITRE ATT&CK for ICS matrix.

Fig 1. Examples of questions given to an LLM

3. LLM-based Intrusion Detection Model for ICS

Figure 1 shows a method to a LLM for intrusion detection in OT/ICS environments based on MITRE ATT&CK ICS framework.

Fig 2. A Structure to Build a LLM for Intrusion Detection in OT/ICS

- By fine-tuning a pre-trained LLM on the dataset, we create a specialized model for detecting and responding to cyber attacks in OT/ICS environments.
- The specialized model can identify attackers' patterns, or even predict future attacks in OT/ICS.
- As a result, organizations can identify the intent of attackers and minimize the damage from attacks.

User : Please tell me about adversarial techniques that may occur in PLC.

Model : Adversarial techniques that can occur in PLC are as follows. - Replication Through Removable Media, Supply Chain Compromise, Rogue Master, etc.

User : So far, Supply Chain Compromise and Rogue Master techniques have occurred in the Initial Access stage in PLC devices. Let me know about the next possible attacks.

Model : The next expected potential tactic is Execution. Attacks such as Change Operating Mode (55%), Execution through API (30%), and Modify Controller Tasking (10%) may occur.

Fig 5. Example of a query and its response between the user and the model

4. Conclusion and Discussion

Data Collections

- Collecting information on MITRE ATT&CK for ICS matrix reflecting real-world attacks using Python scripts.
- Collecting other information related to adversary tactics and techniques.

Real Attack case	Used adversary techniques				
Stuxnet	22 techniques including Hooking, Rootkit, etc.				
PLC-Blaster	5 techniques including DoS, Native API , etc.				

- The differences between OT/ICS environments and traditional IT environments make it difficult to apply existing cyber attack detection solutions.
- The signatures used for traditional intrusion detection can be changed, making it difficult to detect and respond to the attacks if attackers evade the detection methods.
- We proposed a new LLM-based method to detect cyber attacks in OT/ICS environments using the MITRE ATT&CK for ICS framework.

Dankook University

Computer Security & OS Lab